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Abstract
A simple tight-binding theoretical model is proposed for spin-dependent, current-in-plane
transport in highly coherent spin valve structures under specularity conditions. Using
quantum-mechanically coherent and spatially quantized Fermi states in the considered
multilayered system, a system of partial Boltzmann kinetic equations is built for relevant
subbands to yield the expressions for conductance in parallel or antiparallel spin valve states
and thus for the magneto-conductance. It is shown that specularity favors the magnetoresistance
for this structure reaching a high value (very close to 100%). This result is practically
independent of the model parameters, in particular it does not even need that the lifetimes of
majority and minority carriers be different (as necessary for the quasiclassical regimes). The
main MR effect in the considered limit is due to the transformation of coherent quantum states,
induced by the relative rotation of magnetization in the FM layers. Numerical calculations
based on the specific Boltzmann equation with an account of spin-dependent specular reflection
at the interfaces is also performed for a typical choice of material parameters.

1. Introduction

Fabrication of novel nanostructured spintronics devices and
the related experimental studies of spin-dependent electron
transport have stimulated new theoretical approaches to the
physical properties of nanosystems where quantum coherence
effects can have a decisive role, in contrast to the mostly
quasiclassical framework of traditional electronics. One
important class of such systems are spin valves [1, 2] formed
by two ferromagnetic (FM) layers separated by a thin non-
magnetic (NM) spacer. The magnetization of one of the
FM layers (called pinned layer) is fixed by the bias from
the underlying antiferromagnetic (AFM) layer, while the
magnetization of the other FM layer (free layer) rotates easily
when a small magnetic field is applied. This significantly
affects the in-plane conductance, leading to relatively high MR
values, typical for giant magnetoresistance (GMR) [3], but the
technology still demands further improvements. One of them
consists in the introduction of nano-oxide layers (NOLs) just
above the free layer and inside the pinned layer (so that the
pinning is not disrupted) [4]. Such an NOL-equipped device,
the so called specular spin valve (SSV, figure 1(b)) can more

Figure 1. Schematics of spin valve structures: (a) common and
(b) specular.

(This figure is in colour only in the electronic version)

than double the GMR ratio of simpler stacks (figure 1(a)). The
increase of MR is believed to arise from the specular reflection
of electrons at the FM/NOL interfaces [5, 6].

But, in addition to the evident effect of carrier
confinement, the reduced normal-to-plane scale d of magnetic
layers (few nm thickness, controlled within a ∼1 Å precision)
might allow for a pronounced quantization of the normal
component of quasimomentum, as already indicated by
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the recent data on spin-resolved electronic reflection from
magnetic nanolayers [7, 8]. Furthermore, it is expected that
the relevant modes at the Fermi level for each polarization
are dramatically restructured when the mutual polarization of
magnetic layers is changed. All this can qualitatively change
the kinetics of spin-dependent transport, compared to the usual
diffusive scenario for a quasicontinuous spectrum [9, 10].
However, the microscopic understanding of the electron
specular interface reflection is still far from complete, in
particular its role in size quantization and coherence of
Fermi states. Here we propose a theoretical description of
these effects, through a properly modified Boltzmann kinetic
equation, taking into account the formation of transverse-
quantized electronic subbands and spin-dependent specular
reflection at the interfaces within the simplest tight-binding
model, easy enough to advance the numerical calculations of
the MR behavior. It should be noted that such a problem
was commonly treated in the approximation of almost free
electrons (that is, supposing the transport through a sequence
of continuous layers of finite width, neglecting their atomic
structure) either using the Green function techniques [11, 12]
or the numerical computation [13] for the Kubo formulae.
But the size quantization effects obtained in this way are
qualitatively different from those appearing in a discrete
stack of atomically coherent planes, because of a substantial
difference of energy band structures in these two cases:
(i) infinite sequence of wave-guide-like modes for a finite
continuous layer and (ii) n subbands, symmetrically distributed
around a certain atomic energy level, for a stack of n atomic
planes. The latter structure is more adequate for real devices
with layers of few atomic planes, and the direct analysis
proposed below of tight-binding wavefunctions, while fully
equivalent to the Green function description, is technically
easier (as the incoherence effects across the device thickness
are negligible).

2. Model

Let us begin from a single metal layer, made of n atomic planes
with simple cubic lattice coordination and hopping integral
t between nearest neighbors at distance a. The respective
electronic spectrum, for given spin polarization σ =↑,↓ and
in-plane quasimomentum k, consists of n subbands of the form
εα,k,σ = εk +�σ + δα (figure 2). Here εk = 2t (2 − cos akx −
cos aky) is the 2D dispersion law for a single plane, and in a
ferromagnetic metal it is accompanied by the Stoner energy
shift �σ = ±� for minority and majority spins respectively.
The spatial quantization is accounted for by the subband shifts
δα (α = 1, . . . , n) which are the eigenvalues of the n × n
secular equation

∣
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with exact values δα = 2t cos[πα/(n+1)]. Thus the quantized
subbands εα,k,σ are symmetrically distributed around the initial

Figure 2. Sketch of the dispersion laws (along the diagonal
kx = ky = k⊥ of 2D Brillouin zone) in spin-split and spatially
quantized subbands of a magnetic nanolayer. The circles mark the
Fermi states in particular (minority spin) subbands and the related
Fermi velocities vα correspond to the slopes of dispersion laws.

atomic energy level (in this case, zero). The wavefunction for
the α,k, σ state, at the planar position r in the j th plane, is
ψα,k,σ (r, j) = A(α)j eik·rχσ , where the components of the n-
dimensional eigenvector A(α) related to the eigenvalue δα are
explicitly given by

A(α)j =
√

2

n + 1
sin

πα j

n + 1
, (2)

and χσ is the spin function.
Next the model is extended to include the hopping t ′

between the neighbor FM and NM layers, hybridizing the
subbands εf

α,k,σ of the free FM layer (composed of nf atomic
planes), εs

α,k of the NM spacer (composed of ns planes and
having � = 0), and ε

p
α,k,σ of the pinned FM layer (np

planes). We shall denote the respective eigenvectors (for the
uncoupled layers) by F (α), S(α), and P(α), with the components
given again by equation (2) for n = nf, np, ns, while the
notation M (α) is adopted for the eigenvectors of the coupled
system. The specularity effect in this approach is modeled
by zero coupling of the FM layers to their outer neighbors.
The resulting spectrum totals up to nt = 2(nf + ns + np)

spin-resolved modes with energies εα,k and wavefunctions

α,k(r, j) = M (α)

j eik·rχσ(α), where α = 1, . . . , nt and σ(α) is
the implicit polarization of αth mode (figure 3). We emphasize
that from the total of nt modes, only a smaller number, nr,
of modes, those present on the Fermi level, are relevant for
conductance. Thus, for the characteristic case of FM Co layers,
only minority spin subbands should take part in the transport
(as suggested by the bulk Co band structure [14]). Moreover,
we have to take into account the sizeable differences in the
corresponding Fermi velocities vα (practically coincident with
those in the uncoupled layers, figure 2). The most essential
effect of hybridization is on the amplitudes M (α)

j which
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Figure 3. Energy band structure in the trilayered system. All the
modes are doubly degenerate and the relevant modes at the Fermi
level are marked with circles. Inset: spatial composition of atomic
planes forming the sets Jf,s,p in f-, s-, and p-layers.

are generally some weighted combination of all the F, P, S
modes, and the crucial point is that the relative weights of F, P
components in the relevant modes are strongly dependent on
the mutual polarization of FM layers (see below).

Then the kinetics of the composite system is described
by the set of nr distribution functions fα,k = f (0)α,k + gα,k
where f (0)α,k = [eβ(εα,k−εF) + 1]−1 is the usual equilibrium Fermi
function with β = 1/kBT and gα,k is the non-equilibrium part
due to the external electric field E. The current density is given
by the sum

j = e

na

∑

α

′
∫

dk

(2π)2
vα,kgα,k, (3)

where
∑′ means summation over the nr relevant modes, vα,k =

h̄−1∂εα,k/∂k is the electron velocity, and the components of
the non-equilibrium distribution are defined from the system
of Boltzmann equations:

eE

h̄
· ∂ f (0)α,k

∂k
+

∑

β

′′
∫

a2dk′

(2π)2
ω
β,k′
α,k

(

gβ,k′ − gα,k
) = 0. (4)

Here
∑′′ means summation over relevant modes with

conserved spin, σ(α) = σ(β), and ω
β,k′
α,k is the transition

rate due to scattering from the k state of the αth subband
to the k′ state of the βth subband. We consider transitions
only due to elastic scattering by random point-like impurities
with potential V and concentration (per unit cell) c � 1.
Then the Fermi golden rule transition rates are ω

β,k′
α,k =

�α,βδ(εα,k − εβ,k′) with the scattering factors (averaged in
impurity positions)

�α,β = 2πcV 2

h̄n

∑

j

∣
∣
∣M (α)

j M (β)

j

∣
∣
∣

2
. (5)

In this simple model, the first term in the collision integral of
equation (4) turns out to be proportional to

∫

dkgβ,kδ(εF −

εβ,k), that is to the average of the non-equilibrium distribution
over the Fermi surface, and so should vanish. Then the solution
takes the common form gα,k = h̄−1ταeE · ∂ f (0)α,k/∂k where the
relaxation time for the αth mode is defined by

τ−1
α =

∑

β

′′
ρβ�α,β, (6)

including the Fermi density of states ρβ = (a/2π)2
∫

dkδ(εβ,k
− εF) for each βth mode. Then the total conductivity is found
from equation (3) as a sum of partial contributions:

σtot =
∑

α

′
σα, σα = e2ταρα

〈

v2
α

〉

na3
, (7)

where 〈v2
α〉 ≈ ρ−1

α (a/2π)
2
∫

dkv2
α,kδ(εα,k − εF) is the average

of the respective squared Fermi velocity. In fact, this is a
particular case of the general Landauer formula [15], written
for the present system of nr coherent quantum channels.

The system, equations (1)–(6), can be routinely treated by
numerical methods at any relative orientation of magnetiza-
tions in f- and p-layers, from parallel (↑↑) to antiparallel (↑↓),
to result in the principal quantity of interest, the magnetoresis-
tance

�R

R
= σ

↑↑
tot

σ
↑↓
tot

− 1 =
∑′

αρα
〈

v2
α

〉

τ↑↑
α

∑′
αρα

〈

v2
α

〉

τ
↑↓
α

− 1. (8)

But some qualitative conclusions about the specularity
effect on MR in a nanolayered device can be drawn already
from simple inspection of the discrete structure of the
amplitudes M (α)

j , according to the following remarks.
First of all, we suppose that in the absence of hybridization

the majority and minority subbands are well separated from
each other and from the spacer subbands (as is the situation
in bulk Co and Cu). Then we notice that the j -configurations
of the above amplitudes are essentially different for ↑↑ and
↑↓ cases and hence consider them separately. Finally, an
important factor for the very existence of GMR (in this
quantum coherent conductance regime) is the presence of
certain ‘resonances’ between relevant modes at the Fermi level.
Namely, a resonance between two (unhybridized) modes εf

α,k,σ

and εp
β,k,σ appears if their energy separation near the Fermi

level is less then the effective coupling ∼t ′2/εs (mediated by
the spacer modes at typical energy distance εs, see figure 3).
Moreover, for the sake of clarity, we shall restrict the following
consideration to the simplest situation of identical f- and p-
layers where all nf = np modes are relevant and can form
resonant fp-pairs.

Thus, in the ↑↑ configuration, there appears a strong
hybridization in each Fα , Pα pair, forming two collective
modes as their bonding and anti-bonding combinations (in
neglect of small contributions ∼t ′2/(εs�) � 1 of the rest of
the modes):

Mα,±
j ≈ 1√

2

⎧

⎪⎨

⎪⎩

Fα
j , for j ∈ Jf,

0, for j ∈ Js,

±Pα
j , for j ∈ Jp,

(9)
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Figure 4. Configurations of Fermi lines for spatially quantized
subbands of minority electrons in the Brillouin zone. The
characteristic points along high symmetry directions �M and M X
were used to approximate the averages of v−1

α and v2
α .

where Jf,s,p are the sets of atomic planes entering f-, s-, and
p-layers (see inset in figure 3). The respective relaxation times
are given by

(

τ
↑↑
α,±

)−1 ≈ πcV 2

2h̄n

∑

β

′′
ρβ

⎛

⎝
∑

j∈nf

∣
∣
∣Fα

j Fβ

j

∣
∣
∣

2 +
∑

j∈np

∣
∣
∣Pα

j Pβ

j

∣
∣
∣

2

⎞

⎠ .

(10)

Then we can use the exact sum rule for the amplitudes,
equation (2):

n∑

j=1

(

Aαj Aβj

)2 = 1

n + 1

(

1 + δα,β + δα,n+1−β
2

)

, (11)

to present the relaxation times, equation (10), as

τ
↑↑
α,± ≈ h̄n

2πcV 2
∑′′

β ρβ
. (12)

Contrariwise, in the ↑↓ configuration, all the relevant modes
remain almost unhybridized, taking nearly ‘local’ forms:

Mα,f
j ≈

{

Fα
j , for j ∈ Jf,

0, for j ∈ Js ∪ Jp,

Mα,p
j ≈

{

0, for j ∈ Jf ∪ Js,

Pα
j , for j ∈ Jp,

(13)

and in this approximation we obtain for the relaxation
times τ

↑↓
α,i half the value of equation (12). Then the

magnetoresistance, equation (8), is readily estimated as
�R/R ≈ 100%. We notice that this result is practically
independent of the parameters of interlayer coupling and
impurity scattering, in particular it does not even need that
lifetimes of majority and minority carriers be different (as
necessary for the quasiclassical regimes). Also it does
not require modification of the dispersion law (and hence
of relevant Fermi velocities), which is neglected in the
following numerical analysis. Thus the main MR effect in

Table 1. Scattering factors (�α,β ) for the Fermi modes (α,β = 1, 2,
3 and 4) in the parallel (↑↑) and antiparallel (↑↓) configurations.

10−7 ×�α,β (W)
β = 1 β = 2 β = 3 β = 4

α = 1 ↑↑ 0.5175 0.3431 0.3417 0.5151
↑↓ 1.0347 0.6857 0.6824 1.0287

α = 2 ↑↑ 0.3431 0.5118 0.5097 0.3415
↑↓ 0.6857 1.0224 1.0175 0.6818

α = 3 ↑↑ 0.3417 0.5097 0.5077 0.3402
↑↓ 0.6824 1.0175 1.0127 0.6786

α = 4 ↑↑ 0.5151 0.3415 0.3402 0.5127
↑↓ 1.0287 0.6818 0.6786 1.0228

Table 2. The Fermi density of states ρα , averages of squared Fermi
velocities 〈v2

α〉 and relaxation times τα for the Fermi modes (α = 1,
2, 3 and 4) in the parallel (↑↑) and antiparallel (↑↓) configurations.

α 1 2 3 4

1019ρα (J−1) 0.209 0.2439 0.3238 0.5517
1010〈v2

α〉 (m2 s−2) 0.7431 2.2595 2.9334 2.6008
10−12τ↑↑

α (s) 1.7018 1.8157 1.823 1.7094
10−12τ↑↓

α (s) 0.8515 0.9091 0.9133 0.8563

the considered limit is due to the different confinement of
discrete quantum states, expressed by the amplitudes Mα,i

j ,
equations (9) and (13). This purely quantum effect is
induced by the relative rotation of magnetization of the FM
layers rather than their simple quasiclassical confinement, and
this qualitative difference from the known approaches using
the quasicontinuous bulk band structure for Green function
calculations [11–13] should be stressed.

3. Numerical calculations

To verify the above qualitative considerations, a detailed
numerical calculation was done for the particular choice of
parameters: t = t ′ = 0.25 eV, � = 0.5 eV, εs =
2 eV (a single-band model for real d-bands of Co and Cu),
nf = np = 4, ns = 3 (a simple discrete structure of
layers), and V = 0.5 eV, and c = 0.01 (typical impurity
parameters). The Fermi velocities (and their inverse values)
for two characteristic directions in Brillouin zone were used to
approximate the partial densities of states

ρα ≈ a2Lα
8π2h̄

(
1

vα,�M
+ 1

vα,M X

)

,

(Lα being the length of respective Fermi line, figure 4),
and then 〈v2

α〉 ≈ vα,�Mvα,M X . The obtained numerical
results for �α,β , ρα , τα, and 〈v2

α〉 are illustrated in tables 1
and 2, respectively, for the ↑↑ and ↑↓ configurations. These
numerical values lead to ≈99.65% magnetoresistance, that is
quite close to the maximum possible MR = 100% for this
coherent regime. Compare this to purely incoherent currents
where there will be no MR at all in such two-layer system,
so that the finite effect only appears from their partial mixing
due to scattering at the interfaces [9, 16] and is estimated
phenomenologically as ∼ exp(−d/�) of the above maximum
value.
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Actually, the experimental MR values in specular spin
valves [17, 18] are typically lower than the above model
estimates. This could be due to a number of important
factors, not included into the present simple model (which
therefore should be considered as a certain idealized reference
case). First of all, the postulated ideal specularity condition
(supposing the wavefunction is fully confined within the n-
plane system) cannot be exact in reality, and a considerable
part of the electronic density can ‘escape’ through the NOL
barriers to adjacent non-magnetic (or AFM) layers. This part
would act as a parallel conduction channel, mostly unchanged
at reorientation of FM electrodes and hence restricting the
magnetoresistive effect. Also, the used model of rigid
Stoner shifts of spin subbands in FM electrodes of course
overestimates the sharpness of the spin-dependent energy
barrier between these electrodes, where in fact the band
structures are not uniform on scales of few atomic layers.
Other restrictive factors are the temperature effect (by phonons
and magnons), the roughness in the FM/NM interfaces and
the presence of defects as grain boundaries, displacements
and distortions in the crystalline structure [19–21], which all
reduce the coherence of relevant quantum states and so the
validity of the Landauer formula. On the other hand, there
are yet other factors, not included in this consideration, that
can even enhance the device efficiency above the indicated
limit of 100% MR, such as a pronounced difference in Fermi
velocities [13, 22] not taken into account in our case. Finally,
the single-band model may be oversimplified, compared to the
real hybridized s–d band structures of transition metals used in
various numerical studies of spin valves [13, 23–26], however
it allows one to obtain simple analytic expressions for the
magneto-conductance of coherent SSV structures. A further
development within the present model can be done, varying
the number nr of relevant modes and admitting the presence of
both spin polarizations among these modes.

4. Conclusions

A simple single-band tight-binding model was developed to
estimate theoretically the maximum possible enhancement of
GMR in a system of quantum coherent FM nanolayers, using a
specific set of Boltzmann equations for spatially quantized and
spin-resolved subbands and a Landauer-type formula for the
spin-dependent conductance. It is shown that the GMR value
close to 100% can be reached for a limit of fully coherent, fully
specular, and weakly coupled (no change of the dispersion law)
SSV nanostructures and the reducing/enhancing factors for this
value in real SSV systems are discussed. The approach can
be generalized to include more realistic band structures and
relaxation mechanisms.
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